Environnental settesin Waste Managemagnetic Sieve Sregoard Environmental Science Eranchie Atomic Energy of Caraca Limited ## Introduction Objectives of environmental work History of radioecology Issues related to waste management Overview of international programs ## Processes in the Blospiere - Discharge to the biosphere - Lakes and rivers - Soil - Atmosphere - Human realm - Natural realm ## Models of the Biosphele - General issues - Discharge model - Lake and river models - Soil models - Atmospheric models - Food Chain and dose models - Models for non-human - Alternative models ## Parameters for Wodels and Use of Wodels Probability density functions Truncations, correlations Sources of data Sensitivity analysis Model simplification # New Issues, Research Opportunities, International Programs Dose to non-human biota Population doses Chemical toxicity Landscape models International biosphere programs ## Operavesof Environmental Work - Compute an emotionicalisteriouticalisteriouticalisteriouticalisteriouticalisteriouticalisteriouticalisterioutic - ingentalistates materials estable - LOGINAZGIONAME SIEMOBIO OFINASTICE - Sincipalis - NE los estacions estaciones TECHNICAL REPORTS SERIES No. 363 ## History of Radioecology - redict effects of nuclear war - redict effects of civilian nuclear - facilities - Predict effects of waste management - Tremendous amount of data for Cesium and for short term effects TABLE 6 ELEMENT-SPECIFIC GEOMETRIC MEANS (GH) OF THE LOGNORMAL PROBABILITY DENSITY FUNCTIONS FOR THE CONCENTRATION RATIO (Bv;) AND TRANSFER COEFFICIENTS (F;) AND B;;) FOR CONCEPT ASSESSMENT | | Bv _i
Plant/Soil | F _{ij} | | | B _{i j} | |----------|-------------------------------|------------------------|----------------------------|--------------------------|-------------------------| | Element | | TE HILK | TE HEAT | TE BIRD | FV FISH | | Ac | 8.8 × 10-4 | 2.0 x 10 ⁻⁵ | 2.5 x 10 ⁻⁵ | 2.5 × 10 ⁻³ * | 2.5 × 10 ¹ | | ÀM | 1.4×10^{-3} | 4.1×10^{-7} | 3.5×10^{-6} | 8.5×10^{-3} | 1.0×10^{2} | | Ar | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Be | 2.5×10^{-3} | 9.1×10^{-7} | 1.0×10^{-3} | 1.0×10^{-1} | $2.0 \times 10^{\circ}$ | | Bí | 8.8×10^{-3} | 5.0×10^{-4} | 4.0 x 10 ⁻⁴ | 4.0×10^{-2} | 1.5×10^{1} | | Br | 3.8×10^{-1} | 2.0×10^{-2} | 2.5×10^{-2} | 2.5 x 10° * | 4.2×10^{2} | | С | 5.5 x 10° ** | 1.5×10^{-2} | 6.4×10^{-2} | 6.4×10^{0} * | 5.0×10^4 | | Ca | 8.8×10^{-1} | 1.1×10^{-2} | 1.6 x 10-3 | 4.4×10^{-1} | 4.0×10^{1} | | Cd | 1.4×10^{-1} | 1.5×10^{-3} | 3.5 x 10-4 | 8.4×10^{-1} | 2.0×10^{2} | | Cr | 1.9×10^{-3} | 1.1×10^{-3} | 9.2×10^{-3} | 9.2 x 10 ⁻¹ * | 2.0×10^{2} | | Cs | 2.0×10^{-2} | 7.1×10^{-3} | 2.6×10^{-2} | 4.4×10^{0} | 1.0×10^4 | | H*** | | | | | | | Ħf | 8.8 x 10 ⁻⁴ | 5.0×10^{-6} | 1.0×10^{-3} | 1.0 x 10 ⁻¹ * | 3.3 x 10° | | I | $3.8 \times 10^{-2} ****$ | 9.9×10^{-3} | 7.0×10^{-3} | $2.8 \times 10^{\circ}$ | 5.0×10^{1} | | K | 2.5×10^{-1} | 7.2×10^{-3} | 1.8 x 10 ⁻² | 1.8 x 10° * | 1.0×10^{3} | | Kr | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Mo | 6.3×10^{-2} | 1.4×10^{-3} | 6.8×10^{-3} | 5.0 x 10 ⁻¹ | 1.0×10^{1} | | Nb | 5.0×10^{-3} | 2.0×10^{-2} | 2.5×10^{-1} | 3.0×10^{-3} | 1.0×10^{2} | | Ni | 1.5×10^{-2} | 1.0×10^{-3} | 2.0×10^{-3} | 2.0 x 10 ⁻¹ * | 1.0×10^{2} | | Np | 2.5×10^{-2} | 5.0 x 10-6 | 5.5 x 10 ⁻⁵ | 5.5 x 10-3* | 2.5×10^{3} | | P | 8.8×10^{-1} | 1.6×10^{-2} | 4.9 x 10-2 | 4.9 x 10° * | 6.7×10^4 | | Pa | 6.3×10^{-4} | 5.0 x 10-6 | 1.0×10^{-5} | 1.0 x 10-3* | 1.1 x 10 ¹ | | Pb | 1.1×10^{-2} | 2.6 x 10-4 | 4.0 x 10-4 | 4.0 x 10 ⁻² * | 3.0×10^{2} | | Pd | 3.8 x 10 ⁻² | 1.0 x 10 ⁻² | 4.0 x 10-3 | 4.0 x 10 ⁻¹ * | 1.0×10^{1} | | Po | 6.3 x 10 ⁻⁴ | 3.4 x 10-4 | 4.5×10^{-3} | 4.5 x 10 ⁻¹ * | 5.0×10^{2} | | Pu | 1.1 x 10-4 | 1.0 x 10-7 | 2.0 x 10-6 | 7.6 x 10 ⁻³ | 2.5×10^{2} | | Ra | 3.3×10^{-3} | 4.0 x 10-4 | 9.0 x 10-4 | 9.0 x 10 ⁻² * | 5.0 x 10 ¹ | | Rb | 3.8×10^{-2} | 1.2 x 10 ⁻² | 1.1 x 10 ⁻² | 1.1 x 10° * | 2.0×10^{3} | | Re | 3.8 x 10 ⁻¹ | 1.2×10^{-3} | 8.0×10^{-3} | 8.0 x 10 ⁻¹ * | 1.2 x 10 ² | | Rn | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Sb | 5.0×10^{-2} | 1.1 x 10-4 | 1.0×10^{-3} | 1.0 x 10 ⁻¹ * | 2.0×10^{2} | | Se | 6.3×10^{-3} | 4.0×10^{-3} | 1.0 x 10 -
1.5 x 10 - 2 | 9.3 x 10°-x | 1.7 x 10 ² | | Si
Si | 8.8 × 10 ⁻² | 2.5 x 10 ⁻⁵ | 4.0 x 10 ⁻⁵ | 4.0 x 10 ⁻³ * | 2.5 x 10° | | Sm | 2.5×10^{-3} | 2.0 x 10 ⁻⁵ | 5.0×10^{-3} | 5.0 x 10 ⁻¹ * | 3.0 x 10 ¹ | | Sm
Sn | 7.5×10^{-3} | 1.2 x 10 ⁻³ | 8.0 x 10 ⁻² | 8.0 x 10°* | 3.0×10^{-3} | | Sr | 6.3×10^{-1} | 1.4 x 10 ⁻³ | 8.1 x 10 ⁻⁴ | 3.0 x 10 ⁻¹ | 1.0 x 10 ² | | Ta | 2.5 x 10 ⁻³ | 2.8 x 10 ⁻⁶ | 6.0 x 10 ⁻⁴ | 6.0 x 10 ⁻² * | 3.0 x 10 ⁴ | | Tc | 2.4 x 10° | 9.9 x 10 ⁻⁴ | 8.5 x 10 ⁻³ | 1.9 x 10° - x | 1.5 x 10 ¹ | | IC | 4.4 X 10° | 3+3 X IU ' | O'T X IO. | 1.7 X 10. | 1.3 X IO. | continued... ## Issues Related to Waste Management Unknowable setting Burden to future generations Long-lived, mobile, biologically active radionuclides - I-129, CI-36, C-14, Tc-99 - isotopic dilution ## Overview of International Programs ail Homievel and Huel i allowish of the later is the later of | Country | Disposal design evaluated | Scope, methodology or other comments | References
(Project name) | |-------------|--|--|---| | Belgium | HLW in inclined boreholes from tunnels in Boom clay, based on the Mol site | Concept assessment based on site data, deterministic and probabilistic analyses | Marivoet & Bonne
1988 (PAGES) | | | 2. HLW emplaced in tunnels with TRU wastes in Boom clay, based on the Mol site | Concept assessment based on site data, deterministic and probabilistic analyses | Niras/Ondraf 1989
(SAFIR) | | Canada | UF in holes drilled from caverns in granite pluton based on the URL site at the Whiteshell Research Area | Assessment of a "Reference
Disposal System", deterministic
and probabilistic analyses | Goodwin, McConnell
et al. 1994
(AECL EIS) | | Denmark | HLW in boreholes drilled from
the surface in a salt dome, based
on in the Mors salt dome | Concept assessment based on limited site data, deterministic analyses | Lindstrøm Jenson
1987
(in support of PAGIS) | | Germany | HLW in boreholes drilled
from caverns in a salt dome,
based on the Gorleben site | Concept assessment based on site data, deterministic and probabilistic analyses | Storck et al. 1988
(PAGIS) | | | HLW in boreholes and UF emplaced horizontally in caverns in salt dome, at the Gorieben reference site | Inter-comparison of disposal concepts/options in salt to guide research | Buhmann et al. 1991 | | France | HLW in granite inland massif
(Auriat) and in low relief coastal
site (Barfleur) | Concept assessment based on limited site data, deterministic and probabilistic analyses | Van Kote et al. 1988
(PAGIS) | | Finland | UF in holes drilled from drifts in crystalline basement, based on data from five sites | Concept and geological guidance
assessment based on site data,
deterministic analyses | Vieno et al. 1992
(TVO 92) | | Japan | HLW in crystalline and sedimentary formations with intunnel and deposition hole options considered | Generic concept assessments
based on some site data,
deterministic analyses | PNC 1992
(H3) | | Netherlands | HLW in boreholes drilled from caverns in a salt dome | Concept assessment based on limited site data, deterministic analyses. | Glasbergen et al 1987
(in support of PAGIS) | | | 2. HLW in boreholes drilled from caverns in a salt dome | Probabilistic safety assessment with special attention to methodology for scenario identification and treatment of uncertainties | Prij et al 1993
(PRGSA) | | Spain | HLW and UF in crystalline rock and salt formations | Preliminary engineering and safety concept studies. | ENRESA 1994 | Table 5.1 Survey of published performance or safety assessments of geological disposal of nuclear fuel waste: vitrified high-level waste (HLW) or used fuel (UF) - part 1 | Country | Disposal concept | Scope, methodology or other comments | References
(Project name) | | |-------------------|--|--|-------------------------------------|--| | Sweden | HLW and UF in crystalline basement considering alternative concepts and progressively improving | Illustration of waste
management options and
preliminary concept safety
assessments | KBS 1977,1978,1983
(KBS-1, 2, 3) | | | | geological data 2. UF in crystalline basement following KBS-3 concept at | 2. Demonstration of PA methodology, deterministic analysis | SKI 1991 (Project 90) | | | | hypothetical coastal rite 3. UF in crystalline basement following KBS-3 concept, based on the Finnsjön site | 3. Concept and geological guidance assessment using real site data, deterministic and probabilistic analyses | SKB 1992 (SKB 91) | | | | UF in crystalline basement following KBS-3 concept, based on the Äspö site | 4. Development of aspects of methodology for assessment using real site data | SKI in preparation
(SITE 94) | | | Switzerland | HLW in crystalline basement in N. Switzerland | Engineering and safety feasibility study, deterministic analysis | (Project Gewähr) | | | | 2. HLW in sedimentary rocks in N. Switzerland. | Concept assessment, deterministic analysis | Nagra 1988 | | | ž. | 3. HLW in crystalline basement in N. Switzerland. | Safety assessment and geological siting study, deterministic analysis | Nagra 1994
(Kristallin-I) | | | United
Kingdom | HLW in crystalline rocks, above and below water table, and in clay | Preliminary concept assessments, simple deterministic evaluation of alternatives. | | | | | 2. HLW in clay layer, based on Harwell site | Concept assessment based on site data, deterministic and probabilistic analyses | Marivoet & Bonne
1988 (PAGIS) | | | United States | Various, notably: 1. UF in basalt flows based on the Hanford site | Environmental assessment prior to detailed site investigation, for regulatory approval | US DOE 1986 | | | | 2/3. UF in dry deposition holes in unsaturated welded tuff at the Yucca Mountain site | 2. Demonstration of assessment methodology with most recent site data prior to tunnel construction. | Barnard et al. 1992
(TSPA. 1991) | | | | | Setting priorities for site characterisation, guide repository design and develop methodology | Wilson et al 1994
(TSPA 1993) | | Table 5.1 Survey of published performance or safety assessments of geological disposal of nuclear fuel waste: vitrified high-level waste (HLW) or used fuel (UF) - part 2 | Resaturation | SKB 91 | TVO 92 | Kristallin-1 | PNC H3 | AECL 94 | |---|--|---|---|--|---| | of vault | Assumed instantaneous | Assumed
instantaneous | instantaneous | instantaneous | instantaneous | | Container
failure | Probability of initial defect | Disappears at
10 000 y | Disappears at
1000 y | Disappears at 1000 y | Several failure
modes modelled;
all fail by 10 000y | | Contaminant
release from
the waste | Instant release component plus slower matrix degradation | Instant release
component plus
slower matrix
degradation | Matrix
degradation only | Matrix
degradation only | Instant release component plus slower matrix dissolution | | Solubility
limitation | Yes | Yes | Yes | Yes | Yes | | Contaminant
transport in
buffer | Diffusion to host
rock and EDZ | Diffusion to
EDZ | Diffusion to
EDZ | Diffusion to outer boundary | Diffusion
upwards to
backfill | | Contaminant
transport in
backfill | Conservatively reglected | Conservatively neglected | Not applicable | Not applicable | Diffusion
upwards to
geosphere | | Transport from repository | Spatially
distributed source
to geosphere | Instantaneously
along EDZ to
fracture zone | Instantaneously
along EDZ to
water-conducting
features in rock | Instantaneously
to geosphere
transport path | Vault sectors
connected to
geosphere
transport paths | | Transport in sparsely fractured host rock | Advection in dual-
porosity stream
tubes in variable
hydraulic
conductivity field | Conservatively
not included in
transport path | Advection in channels within water-conducting features | Advection in fractured or continuos porous medium | Advection and
diffusion in
equivalent porous
medium (diff-
usion dominates) | | Transport in major fracture zones | Fracture zones are included as trend functions with higher median conductivity than the sparsely fractured rock mass | Advection in a dual-porosity medium | Instantaneous (included in an alternative model) | Not considered
(Release
calculated at 10,
100 and 1000 m
from vault) | Advection and diffusion in equivalent porous medium (advection dominates) | | Transport in overlying geo-
units | None | None | Rapid | Not considered | Advection and diffusion in sediment cover | | Surface
environment
(biosphere) | Well, lake and
agricultural
pathways | Well, lake and
agricultural
pathways | Gravel aquifer,
well, river and
agricultural
pathways | Not defined. Drinking water dose applied to geosphere flux | Well, lake,
agricultural and
other pathways | | Critical Group | Subsistence
farmers | Subsistence
farmers | Subsistence
farmers | Individual
drinking water | Subsistence
farmers and
hunters.* | Refer also to Figures 7.1 and 7.2 Table 7.1 Primary conceptual model choices - comparison of the main features, processes and assumptions contained in the assessment model chains of groundwater-mediated release for each of the five assessments ^{*} Doses to other biota also calculated. See also Tables 7.1 and 7.4. ## Swedish ### Finnish #### **SKB 91** **TVO 92** #### Kristallin-1 xuiss #### PNC H3 Jupan #### **AECL 94** KEY: See also Tables 7.1 and 7.3. Table 1b. Risk related coiteria: | Criteria as listed in the review | Specific to: | Met by
Canadian
concepts | |--|--------------|--------------------------------| | remote location with sparse population | | yes | | intrusion barrier, especially to non-human biota, because of groundwater | | some | | low possibility for human intrusion because of subsea location | subsea | BODE | | in communities that received most benefit from nuclear industry | | some | | in stable rock formations where intrusion is unlikely | deep | some | | more than 1 km to streams, no eprings or other discharges on site | | BORC | | no exploitable resources | | some | | future population growth and developments not likely to affect the performance | | SOURC | | the waste should be below the rooting zone of indigenous plants | | some | | avoid critical habitats of endangered species or special cultural resources | | yes | | no irrigated or irrigable land | | none | | no surficial sand or gravel deposits | | SOURC | | far from surface water supplies | | 2000 | | little prime agricultural land | | SOURC | | exclude protected lands, including deer wintering areas | | | | avoid Class 1 agricultural lands | | yes | | large enough site so vaults are 1000 m from the site border | | some | | not above an aquifer that serves a community or a business | surface | yes | | seek areas with low projected population growth | | yes | | more than 15 miles (~24 km) of a community of 100,000 | | yes | | more than two miles (~3 km) of a community of 5000 | | - | | avoid quarry blasting, conflicting sources of radiation and military lands | | yes | | more than 2 km from boundary of population centers | | yes | | avoid the wind corridor, upwind or downwind, of existing facilities | | BORC | | avoid bogs or wetlands at the groundwater discharge point which may accumulate radionuclides | | some | | avoid areas with fair or good forestry potential | | SOTTE | | avoid good recreational potential (in the case that institutional control fails) | | none | | have road access avoiding residential streets | | yes | | significant natural areas, such as areas with species that are | | yes | 5. Remaining area after exclusionary screen ## DISPARIENT INC. ETCS OF CHE - i Coenawaierosonarae - -lowaying areas - neseus o sobsides ### Methods to detect groundwater discharge ping pong balls ■ deer ■ salinity probe ## Salinity probe - drag along lake and river bottoms - e detects variation in temperature, salinity - expect greater salinity for a discharge of deep groundwater - not a positive test, e.g. will detect evaporite ### Animal behavior ### animal licks - associated with mineralization - often sodium and chloride - not a positive test ## Helium (He) discharge - alpha decay creates helium mucleus - helium moves with water or as a gas - easily detected, low concentration in the atmosphere - a helium signature indicates: - uranium mineralizationinear suriace: - concentrated discharge of a large volume of ## EC (ms/m)