Environnental settesin Waste Managemagnetic

Sieve Sregoard

Environmental Science Eranchie
Atomic Energy of Caraca Limited

Introduction

Objectives of environmental work

History of radioecology

Issues related to waste management

Overview of international programs

Processes in the Blospiere

- Discharge to the biosphere
- Lakes and rivers
- Soil
- Atmosphere
- Human realm
- Natural realm

Models of the Biosphele

- General issues
- Discharge model
- Lake and river models
- Soil models
 - Atmospheric models
- Food Chain and dose models
- Models for non-human
 - Alternative models

Parameters for Wodels and Use of Wodels

Probability density functions

Truncations, correlations

Sources of data

Sensitivity analysis

Model simplification

New Issues, Research Opportunities, International Programs

Dose to non-human biota

Population doses

Chemical toxicity

Landscape models

International biosphere programs

Operavesof Environmental Work

- Compute an emotionicalisteriouticalisteriouticalisteriouticalisteriouticalisteriouticalisteriouticalisterioutic
- ingentalistates materials estable
- LOGINAZGIONAME SIEMOBIO OFINASTICE
- Sincipalis
- NE los estacions estaciones

TECHNICAL REPORTS SERIES No. 363

History of Radioecology

- redict effects of nuclear war
- redict effects of civilian nuclear
- facilities
- Predict effects of waste management
- Tremendous amount of data for Cesium and for short term effects

TABLE 6

ELEMENT-SPECIFIC GEOMETRIC MEANS (GH) OF THE LOGNORMAL

PROBABILITY DENSITY FUNCTIONS FOR THE CONCENTRATION RATIO

(Bv;) AND TRANSFER COEFFICIENTS (F;) AND B;;) FOR CONCEPT ASSESSMENT

	Bv _i Plant/Soil	F _{ij}			B _{i j}
Element		TE HILK	TE HEAT	TE BIRD	FV FISH
Ac	8.8 × 10-4	2.0 x 10 ⁻⁵	2.5 x 10 ⁻⁵	2.5 × 10 ⁻³ *	2.5 × 10 ¹
ÀM	1.4×10^{-3}	4.1×10^{-7}	3.5×10^{-6}	8.5×10^{-3}	1.0×10^{2}
Ar	0.0	0.0	0.0	0.0	0.0
Be	2.5×10^{-3}	9.1×10^{-7}	1.0×10^{-3}	1.0×10^{-1}	$2.0 \times 10^{\circ}$
Bí	8.8×10^{-3}	5.0×10^{-4}	4.0 x 10 ⁻⁴	4.0×10^{-2}	1.5×10^{1}
Br	3.8×10^{-1}	2.0×10^{-2}	2.5×10^{-2}	2.5 x 10° *	4.2×10^{2}
С	5.5 x 10° **	1.5×10^{-2}	6.4×10^{-2}	6.4×10^{0} *	5.0×10^4
Ca	8.8×10^{-1}	1.1×10^{-2}	1.6 x 10-3	4.4×10^{-1}	4.0×10^{1}
Cd	1.4×10^{-1}	1.5×10^{-3}	3.5 x 10-4	8.4×10^{-1}	2.0×10^{2}
Cr	1.9×10^{-3}	1.1×10^{-3}	9.2×10^{-3}	9.2 x 10 ⁻¹ *	2.0×10^{2}
Cs	2.0×10^{-2}	7.1×10^{-3}	2.6×10^{-2}	4.4×10^{0}	1.0×10^4
H***					
Ħf	8.8 x 10 ⁻⁴	5.0×10^{-6}	1.0×10^{-3}	1.0 x 10 ⁻¹ *	3.3 x 10°
I	$3.8 \times 10^{-2} ****$	9.9×10^{-3}	7.0×10^{-3}	$2.8 \times 10^{\circ}$	5.0×10^{1}
K	2.5×10^{-1}	7.2×10^{-3}	1.8 x 10 ⁻²	1.8 x 10° *	1.0×10^{3}
Kr	0.0	0.0	0.0	0.0	0.0
Mo	6.3×10^{-2}	1.4×10^{-3}	6.8×10^{-3}	5.0 x 10 ⁻¹	1.0×10^{1}
Nb	5.0×10^{-3}	2.0×10^{-2}	2.5×10^{-1}	3.0×10^{-3}	1.0×10^{2}
Ni	1.5×10^{-2}	1.0×10^{-3}	2.0×10^{-3}	2.0 x 10 ⁻¹ *	1.0×10^{2}
Np	2.5×10^{-2}	5.0 x 10-6	5.5 x 10 ⁻⁵	5.5 x 10-3*	2.5×10^{3}
P	8.8×10^{-1}	1.6×10^{-2}	4.9 x 10-2	4.9 x 10° *	6.7×10^4
Pa	6.3×10^{-4}	5.0 x 10-6	1.0×10^{-5}	1.0 x 10-3*	1.1 x 10 ¹
Pb	1.1×10^{-2}	2.6 x 10-4	4.0 x 10-4	4.0 x 10 ⁻² *	3.0×10^{2}
Pd	3.8 x 10 ⁻²	1.0 x 10 ⁻²	4.0 x 10-3	4.0 x 10 ⁻¹ *	1.0×10^{1}
Po	6.3 x 10 ⁻⁴	3.4 x 10-4	4.5×10^{-3}	4.5 x 10 ⁻¹ *	5.0×10^{2}
Pu	1.1 x 10-4	1.0 x 10-7	2.0 x 10-6	7.6 x 10 ⁻³	2.5×10^{2}
Ra	3.3×10^{-3}	4.0 x 10-4	9.0 x 10-4	9.0 x 10 ⁻² *	5.0 x 10 ¹
Rb	3.8×10^{-2}	1.2 x 10 ⁻²	1.1 x 10 ⁻²	1.1 x 10° *	2.0×10^{3}
Re	3.8 x 10 ⁻¹	1.2×10^{-3}	8.0×10^{-3}	8.0 x 10 ⁻¹ *	1.2 x 10 ²
Rn	0.0	0.0	0.0	0.0	0.0
Sb	5.0×10^{-2}	1.1 x 10-4	1.0×10^{-3}	1.0 x 10 ⁻¹ *	2.0×10^{2}
Se	6.3×10^{-3}	4.0×10^{-3}	1.0 x 10 - 1.5 x 10 - 2	9.3 x 10°-x	1.7 x 10 ²
Si Si	8.8 × 10 ⁻²	2.5 x 10 ⁻⁵	4.0 x 10 ⁻⁵	4.0 x 10 ⁻³ *	2.5 x 10°
Sm	2.5×10^{-3}	2.0 x 10 ⁻⁵	5.0×10^{-3}	5.0 x 10 ⁻¹ *	3.0 x 10 ¹
Sm Sn	7.5×10^{-3}	1.2 x 10 ⁻³	8.0 x 10 ⁻²	8.0 x 10°*	3.0×10^{-3}
Sr	6.3×10^{-1}	1.4 x 10 ⁻³	8.1 x 10 ⁻⁴	3.0 x 10 ⁻¹	1.0 x 10 ²
Ta	2.5 x 10 ⁻³	2.8 x 10 ⁻⁶	6.0 x 10 ⁻⁴	6.0 x 10 ⁻² *	3.0 x 10 ⁴
Tc	2.4 x 10°	9.9 x 10 ⁻⁴	8.5 x 10 ⁻³	1.9 x 10° - x	1.5 x 10 ¹
IC	4.4 X 10°	3+3 X IU '	O'T X IO.	1.7 X 10.	1.3 X IO.

continued...

Issues Related to Waste Management

Unknowable setting

Burden to future generations

Long-lived, mobile, biologically active radionuclides

- I-129, CI-36, C-14, Tc-99
- isotopic dilution

Overview of International Programs

ail Homievel and Huel

i allowish of the later is the later of the

Country	Disposal design evaluated	Scope, methodology or other comments	References (Project name)
Belgium	HLW in inclined boreholes from tunnels in Boom clay, based on the Mol site	Concept assessment based on site data, deterministic and probabilistic analyses	Marivoet & Bonne 1988 (PAGES)
	2. HLW emplaced in tunnels with TRU wastes in Boom clay, based on the Mol site	Concept assessment based on site data, deterministic and probabilistic analyses	Niras/Ondraf 1989 (SAFIR)
Canada	UF in holes drilled from caverns in granite pluton based on the URL site at the Whiteshell Research Area	Assessment of a "Reference Disposal System", deterministic and probabilistic analyses	Goodwin, McConnell et al. 1994 (AECL EIS)
Denmark	HLW in boreholes drilled from the surface in a salt dome, based on in the Mors salt dome	Concept assessment based on limited site data, deterministic analyses	Lindstrøm Jenson 1987 (in support of PAGIS)
Germany	HLW in boreholes drilled from caverns in a salt dome, based on the Gorleben site	Concept assessment based on site data, deterministic and probabilistic analyses	Storck et al. 1988 (PAGIS)
	HLW in boreholes and UF emplaced horizontally in caverns in salt dome, at the Gorieben reference site	Inter-comparison of disposal concepts/options in salt to guide research	Buhmann et al. 1991
France	HLW in granite inland massif (Auriat) and in low relief coastal site (Barfleur)	Concept assessment based on limited site data, deterministic and probabilistic analyses	Van Kote et al. 1988 (PAGIS)
Finland	UF in holes drilled from drifts in crystalline basement, based on data from five sites	Concept and geological guidance assessment based on site data, deterministic analyses	Vieno et al. 1992 (TVO 92)
Japan	HLW in crystalline and sedimentary formations with intunnel and deposition hole options considered	Generic concept assessments based on some site data, deterministic analyses	PNC 1992 (H3)
Netherlands	HLW in boreholes drilled from caverns in a salt dome	Concept assessment based on limited site data, deterministic analyses.	Glasbergen et al 1987 (in support of PAGIS)
	2. HLW in boreholes drilled from caverns in a salt dome	Probabilistic safety assessment with special attention to methodology for scenario identification and treatment of uncertainties	Prij et al 1993 (PRGSA)
Spain	HLW and UF in crystalline rock and salt formations	Preliminary engineering and safety concept studies.	ENRESA 1994

Table 5.1 Survey of published performance or safety assessments of geological disposal of nuclear fuel waste: vitrified high-level waste (HLW) or used fuel (UF) - part 1

Country	Disposal concept	Scope, methodology or other comments	References (Project name)	
Sweden	HLW and UF in crystalline basement considering alternative concepts and progressively improving	Illustration of waste management options and preliminary concept safety assessments	KBS 1977,1978,1983 (KBS-1, 2, 3)	
	geological data 2. UF in crystalline basement following KBS-3 concept at	2. Demonstration of PA methodology, deterministic analysis	SKI 1991 (Project 90)	
	hypothetical coastal rite 3. UF in crystalline basement following KBS-3 concept, based on the Finnsjön site	3. Concept and geological guidance assessment using real site data, deterministic and probabilistic analyses	SKB 1992 (SKB 91)	
	UF in crystalline basement following KBS-3 concept, based on the Äspö site	4. Development of aspects of methodology for assessment using real site data	SKI in preparation (SITE 94)	
Switzerland	HLW in crystalline basement in N. Switzerland	Engineering and safety feasibility study, deterministic analysis	(Project Gewähr)	
	2. HLW in sedimentary rocks in N. Switzerland.	Concept assessment, deterministic analysis	Nagra 1988	
ž.	3. HLW in crystalline basement in N. Switzerland.	Safety assessment and geological siting study, deterministic analysis	Nagra 1994 (Kristallin-I)	
United Kingdom	HLW in crystalline rocks, above and below water table, and in clay	Preliminary concept assessments, simple deterministic evaluation of alternatives.		
	2. HLW in clay layer, based on Harwell site	Concept assessment based on site data, deterministic and probabilistic analyses	Marivoet & Bonne 1988 (PAGIS)	
United States	Various, notably: 1. UF in basalt flows based on the Hanford site	Environmental assessment prior to detailed site investigation, for regulatory approval	US DOE 1986	
	2/3. UF in dry deposition holes in unsaturated welded tuff at the Yucca Mountain site	2. Demonstration of assessment methodology with most recent site data prior to tunnel construction.	Barnard et al. 1992 (TSPA. 1991)	
		Setting priorities for site characterisation, guide repository design and develop methodology	Wilson et al 1994 (TSPA 1993)	

Table 5.1 Survey of published performance or safety assessments of geological disposal of nuclear fuel waste: vitrified high-level waste (HLW) or used fuel (UF) - part 2

Resaturation	SKB 91	TVO 92	Kristallin-1	PNC H3	AECL 94
of vault	Assumed instantaneous	Assumed instantaneous	instantaneous	instantaneous	instantaneous
Container failure	Probability of initial defect	Disappears at 10 000 y	Disappears at 1000 y	Disappears at 1000 y	Several failure modes modelled; all fail by 10 000y
Contaminant release from the waste	Instant release component plus slower matrix degradation	Instant release component plus slower matrix degradation	Matrix degradation only	Matrix degradation only	Instant release component plus slower matrix dissolution
Solubility limitation	Yes	Yes	Yes	Yes	Yes
Contaminant transport in buffer	Diffusion to host rock and EDZ	Diffusion to EDZ	Diffusion to EDZ	Diffusion to outer boundary	Diffusion upwards to backfill
Contaminant transport in backfill	Conservatively reglected	Conservatively neglected	Not applicable	Not applicable	Diffusion upwards to geosphere
Transport from repository	Spatially distributed source to geosphere	Instantaneously along EDZ to fracture zone	Instantaneously along EDZ to water-conducting features in rock	Instantaneously to geosphere transport path	Vault sectors connected to geosphere transport paths
Transport in sparsely fractured host rock	Advection in dual- porosity stream tubes in variable hydraulic conductivity field	Conservatively not included in transport path	Advection in channels within water-conducting features	Advection in fractured or continuos porous medium	Advection and diffusion in equivalent porous medium (diff- usion dominates)
Transport in major fracture zones	Fracture zones are included as trend functions with higher median conductivity than the sparsely fractured rock mass	Advection in a dual-porosity medium	Instantaneous (included in an alternative model)	Not considered (Release calculated at 10, 100 and 1000 m from vault)	Advection and diffusion in equivalent porous medium (advection dominates)
Transport in overlying geo- units	None	None	Rapid	Not considered	Advection and diffusion in sediment cover
Surface environment (biosphere)	Well, lake and agricultural pathways	Well, lake and agricultural pathways	Gravel aquifer, well, river and agricultural pathways	Not defined. Drinking water dose applied to geosphere flux	Well, lake, agricultural and other pathways
Critical Group	Subsistence farmers	Subsistence farmers	Subsistence farmers	Individual drinking water	Subsistence farmers and hunters.*

Refer also to Figures 7.1 and 7.2

Table 7.1 Primary conceptual model choices - comparison of the main features, processes and assumptions contained in the assessment model chains of groundwater-mediated release for each of the five assessments

^{*} Doses to other biota also calculated.

See also Tables 7.1 and 7.4.

Swedish

Finnish

SKB 91

TVO 92

Kristallin-1

xuiss

PNC H3

Jupan

AECL 94

KEY:

See also Tables 7.1 and 7.3.

Table 1b. Risk related coiteria:

Criteria as listed in the review	Specific to:	Met by Canadian concepts
remote location with sparse population		yes
intrusion barrier, especially to non-human biota, because of groundwater		some
low possibility for human intrusion because of subsea location	subsea	BODE
in communities that received most benefit from nuclear industry		some
in stable rock formations where intrusion is unlikely	deep	some
more than 1 km to streams, no eprings or other discharges on site		BORC
no exploitable resources		some
future population growth and developments not likely to affect the performance		SOURC
the waste should be below the rooting zone of indigenous plants		some
avoid critical habitats of endangered species or special cultural resources		yes
no irrigated or irrigable land		none
no surficial sand or gravel deposits		SOURC
far from surface water supplies		2000
little prime agricultural land		SOURC
exclude protected lands, including deer wintering areas		
avoid Class 1 agricultural lands		yes
large enough site so vaults are 1000 m from the site border		some
not above an aquifer that serves a community or a business	surface	yes
seek areas with low projected population growth		yes
more than 15 miles (~24 km) of a community of 100,000		yes
more than two miles (~3 km) of a community of 5000		-
avoid quarry blasting, conflicting sources of radiation and military lands		yes
more than 2 km from boundary of population centers		yes
avoid the wind corridor, upwind or downwind, of existing facilities		BORC
avoid bogs or wetlands at the groundwater discharge point which may accumulate radionuclides		some
avoid areas with fair or good forestry potential		SOTTE
avoid good recreational potential (in the case that institutional control fails)		none
have road access avoiding residential streets		yes
significant natural areas, such as areas with species that are		yes

5. Remaining area after exclusionary screen

DISPARIENT INC. ETCS OF CHE

- i Coenawaierosonarae
 - -lowaying areas
- neseus o sobsides

Methods to detect groundwater discharge

ping pong balls

■ deer

■ salinity probe

Salinity probe

- drag along lake and river bottoms
- e detects variation in temperature, salinity
- expect greater salinity for a discharge of deep groundwater
- not a positive test, e.g. will detect evaporite

Animal behavior

animal licks

- associated with mineralization
- often sodium and chloride
- not a positive test

Helium (He) discharge

- alpha decay creates helium mucleus
- helium moves with water or as a gas
- easily detected, low concentration in the atmosphere
- a helium signature indicates:
 - uranium mineralizationinear suriace:
 - concentrated discharge of a large volume of

EC (ms/m)

